Elastic Full Waveform Inversion
\(\mathbb{E}^{FWI}\) is a collection of benchmark datasets for Elastic Full Waveform Inversion. We release eight synthetic datasets characterizing different subsurface structures. The benchmarks cover results by three recent deep learning-based methods: ElasticNet, ElasticGAN and ElasticTransformer.

\(\mathbb{E}^{FWI}\) is the first open-source platform to facilitate Elastic FWI research. The datasets are built upon previously-released OpenFWI and inherit the mutli-scale, multi-domain and multi-subsurface-complexity properties. For details of the datasets, check here. To keep informed of major updates, please subscribe to our Google group.

Abstract image
Gallery of \(\mathbb{E}^{FWI}\)
- \(V_P\): P-wave velocity maps
- \(V_S\): S-wave velocity maps
- \(Pr\): Poisson's ratio calculated from \(V_P, V_S\)

\(\mathbb{E}^{FWI}\) Comparing with OpenFWI


Abstract image

Significance of Elastic FWI

- Elastic FWI reconstruct the P- and S- wave velocities from the vertical and horizontal component of seismic data, which provides more comprehensive and precise representation of subsurfaces.
- Poisson ratio is an essential parameter for hydrogen and geothermal reservoir characterization.
- Applications: Lithology discrimination; Fracture characterization; Estimation of fluid content and saturation.

Datasets

- Vel Family
Name Size #Training #Validation Input shape Output shape Note
\(\mathbb{E}^{FVA}\) 123GB 24K 6K (5,1000,70) (1,70,70) Simple situation with flat layers
\(\mathbb{E}^{FVB}\) 123GB 24K 6K (5,1000,70) (1,70,70) Difficult version of \(\mathbb{E}^{FVA}\)
\(\mathbb{E}^{CVA}\) 123GB 24K 6K (5,1000,70) (1,70,70) Simple situation with curved layers
\(\mathbb{E}^{CVB}\) 123GB 24K 6K (5,1000,70) (1,70,70) Difficult version of \(\mathbb{E}^{CVA}\)

- Fault Family
Name Size #Training #Validation Input shape Output shape Note
\(\mathbb{E}^{FFA}\) 222GB 48K 6K (5,1000,70) (1,70,70) Flat layers with one fault
\(\mathbb{E}^{FFB}\) 222GB 48K 6K (5,1000,70) (1,70,70) Difficult version of \(\mathbb{E}^{FFA}\)
\(\mathbb{E}^{CFA}\) 222GB 48K 6K (5,1000,70) (1,70,70) Curve layers with one fault
\(\mathbb{E}^{CFB}\) 222GB 48K 6K (5,1000,70) (1,70,70) Difficult version of \(\mathbb{E}^{CFA}\)

Benchmarks

- The pretrained models will be released upon approval by LANL.

- Benchmark by ElasticNet (SSIM)
Dataset Loss Function \(V_P\) \(V_S\) Poisson ratio
\(\mathbb{E}^{FVA}\) \(\ell_1 \backslash \ell_2 \) \( 0.8993 \backslash \ 0.9051 \) \( 0.8757 \backslash \ 0.9030 \) \( 0.7493 \backslash \ 0.7402 \)
\(\mathbb{E}^{CVA}\) \(\ell_1 \backslash \ell_2 \) \(0.7577 \backslash 0.7849 \) \(0.7635 \backslash 0.7878 \) \(0.6484 \backslash 0.6378 \)
\(\mathbb{E}^{FVB}\) \(\ell_1 \backslash \ell_2 \) \(0.8149 \backslash 0.8197 \) \(0.8203 \backslash 0.8266 \) \(0.6741 \backslash 0.6321 \)
\(\mathbb{E}^{CVB}\) \(\ell_1 \backslash \ell_2 \) \(0.6091 \backslash 0.6173 \) \(0.6434 \backslash 0.6506 \) \(0.5111 \backslash 0.4957 \)
\(\mathbb{E}^{FFA}\) \(\ell_1 \backslash \ell_2 \) \( 0.8933 \backslash \ 0.8928 \) \( 0.8609 \backslash \ 0.8591 \) \( 0.7296 \backslash \ 0.7307 \)
\(\mathbb{E}^{CFA}\) \(\ell_1 \backslash \ell_2 \) \(0.7263 \backslash 0.7234 \) \(0.7358 \backslash 0.7382 \) \(0.6842 \backslash 0.6686 \)
\(\mathbb{E}^{FFB}\) \(\ell_1 \backslash \ell_2 \) \(0.6858 \backslash 0.6815 \) \(0.7225 \backslash 0.7216 \) \(0.5987 \backslash 0.5801 \)
\(\mathbb{E}^{CFB}\) \(\ell_1 \backslash \ell_2 \) \(0.5613 \backslash 0.5744 \) \(0.6103 \backslash 0.6242 \) \(0.5077 \backslash 0.4945 \)

- Benchmark by ElasticGAN (SSIM)
Dataset Loss Function \(V_P\) \(V_S\) Poisson ratio
\(\mathbb{E}^{FVA}\) \(\ell_1 \backslash \ell_2 \) \( 0.9290 \backslash \ 0.9133 \) \( 0.9138 \backslash \ 0.9194 \) \( 0.7158 \backslash \ 0.5945 \)
\(\mathbb{E}^{CVA}\) \(\ell_1 \backslash \ell_2 \) \(0.7686 \backslash 0.7389 \) \(0.7783 \backslash 0.7772 \) \(0.5565 \backslash 0.4071 \)
\(\mathbb{E}^{FVB}\) \(\ell_1 \backslash \ell_2 \) \(0.8182 \backslash 0.7898 \) \(0.8239 \backslash 0.7906 \) \(0.5919 \backslash 0.4040 \)
\(\mathbb{E}^{CVB}\) \(\ell_1 \backslash \ell_2 \) \(0.6215 \backslash 0.6109 \) \(0.6483 \backslash 0.6517 \) \(0.4621 \backslash 0.4726 \)
\(\mathbb{E}^{FFA}\) \(\ell_1 \backslash \ell_2 \) \( 0.9033 \backslash \ 0.8994 \) \( 0.8567 \backslash \ 0.8883 \) \( 0.6663 \backslash \ 0.6206 \)
\(\mathbb{E}^{CFA}\) \(\ell_1 \backslash \ell_2 \) \(0.8601 \backslash 0.8386 \) \(0.8389 \backslash 0.8553 \) \(0.6571 \backslash 0.5031 \)
\(\mathbb{E}^{FFB}\) \(\ell_1 \backslash \ell_2 \) \(0.7029 \backslash 0.6791 \) \(0.7313 \backslash 0.7412 \) \(0.5873 \backslash 0.4746 \)
\(\mathbb{E}^{CFB}\) \(\ell_1 \backslash \ell_2 \) \(0.6008 \backslash 0.6014 \) \(0.6421 \backslash 0.6464 \) \(0.5730 \backslash 0.6286 \)

- Benchmark by ElasticTransformer (SSIM)
Dataset Loss Function \(V_P\) \(V_S\) Poisson ratio
\(\mathbb{E}^{FVA}\) \(\ell_1 \backslash \ell_2 \) \(0.9374 \backslash 0.9414 \) \(0.9417 \backslash 0.9420 \) \(0.7951 \backslash 0.7861 \)
\(\mathbb{E}^{CVA}\) \(\ell_1 \backslash \ell_2 \) \(0.7958 \backslash 0.8142 \) \(0.7937 \backslash 0.8070 \) \(0.5160 \backslash 0.5196 \)
\(\mathbb{E}^{FVB}\) \(\ell_1 \backslash \ell_2\) \(0.8505 \backslash 0.8462 \) \(0.8547 \backslash 0.8512 \) \(0.6392 \backslash 0.6136 \)
\(\mathbb{E}^{CVB}\) \(\ell_1 \backslash \ell_2 \) \(0.6649 \backslash 0.6723 \) \(0.6836 \backslash 0.6958 \) \(0.4031 \backslash 0.3962 \)
\(\mathbb{E}^{FFA}\) \(\ell_1 \backslash \ell_2 \) \(0.9376 \backslash 0.9418 \) \(0.9141 \backslash 0.9174 \) \(0.7672 \backslash 0.7473 \)
\(\mathbb{E}^{CFA}\) \(\ell_1 \backslash \ell_2 \) \(0.9100 \backslash 0.9140 \) \(0.8768 \backslash 0.8820 \) \(0.7003 \backslash 0.6729 \)
\(\mathbb{E}^{FFB}\) \(\ell_1 \backslash \ell_2 \) \(0.7013 \backslash 0.7227 \) \(0.7447 \backslash 0.7630 \) \(0.4505 \backslash 0.5058 \)
\(\mathbb{E}^{CFB}\) \(\ell_1 \backslash \ell_2 \) \(0.6074 \backslash 0.6207 \) \(0.6513 \backslash 0.6614 \) \(0.3700 \backslash 0.3988 \)

Citation


If you find our datasets and benchmarks useful, please cite as below.
@article{feng2023efwi,
  title={\mathbf{\mathbb{E}^{FWI}}: Multi-parameter Benchmark Datasets for Elastic Full Waveform Inversion of Geophysical Properties},
  author={ Shihang Feng, Hanchen Wang, Chengyuan Deng, Yinan Feng, Yanhua Liu, Min Zhu, Peng Jin, Yinpeng Chen, Youzuo Lin},
  journal={arXiv preprint arXiv:2306.12386},
  year = {2023},
}